
Answer to Question 1

Given 𝐾 = (𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5) 5 distinct keys in sorted order 𝑘1 < 𝑘2 < 𝑘3 < 𝑘4 < 𝑘5 and we

will build a binary search tree from these keys. For each key 𝑘𝑖, we have a probability 𝑝𝑖 that a

search will be for 𝑘𝑖. We need 6 (n+1) “dummy keys” for the leave nodes of the tree. For

dummy key 𝑑𝑖 for 𝑖 = 1, 2, 3 ,4 represents all values between 𝑘𝑖 and 𝑘(𝑖 + 1). For each dummy

key 𝑑𝑖 , we have a probability 𝑞𝑖 that a search will correspond to 𝑑𝑖 that represents values not

in 𝐾. Every search is either successful or unsuccessful, so we get:

∑ 𝑝𝑖

𝑛

𝑖=1

+ ∑ 𝑞𝑖 = 1

𝑛

𝑖=0

.

Assume the actual cost of a search = the number of nodes examined.

Then, 𝐸[𝑠𝑒𝑎𝑟𝑐ℎ 𝑐𝑜𝑠𝑡 𝑖𝑛 𝑇] = 1 + ∑ 𝑑𝑒𝑝𝑡ℎ𝑇(𝑘𝑖). 𝑝𝑖
𝑛
𝑖=1 + ∑ 𝑑𝑒𝑝𝑡ℎ𝑇(𝑘𝑖). 𝑞𝑖

𝑛
𝑖=0

For the optimal binary search tree, we want the overall height to be the smallest of all the

possible optimal binary trees that can be generated from the given keys and possibilities. We

can use matrix-chain multiplication for exhaustive checking for lowest cost, but it must be an

efficient algorithm as such:

Step 1: Generate Structure of an optimal binary search tree

Optimal search trees will consist of an optimal substructure: if an optimal binary search tree T

has a subtree T’ then this subtree T’ must be optimal. We can prove this as such

 Lets say one of the keys in 𝑘1, … , 𝑘5 is 𝑘𝑟, where 1 ≤ 𝑟 ≤ 5 is the root of an optimal

subtree for the 5 keys.

 Left subtree of 𝑘𝑟 contains 𝑘1, … , 𝑘(𝑟 − 1).

 Right subtree of 𝑘𝑟 contains 𝑘(𝑟 + 1), … , 𝑘5.

So, using the optimal substructure we can generate an optimal search tree with the given keys

by selecting any of the 5 keys as the root. We examine all possible binary trees by choosing all

other candidate roots 𝑘𝑟 where 1 ≤ 𝑟 ≤ 5. In the situation of an empty left/right subtree, we

consider the dummy key 𝑑(𝑖 − 1) 𝑜𝑟 𝑑𝑗 and can interpret the sequence.

Step 2: Recursive solution

 From the previous step for each optimal BST we define 𝑒[𝑖, 𝑗] =

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑠𝑒𝑎𝑟𝑐ℎ 𝑐𝑜𝑠𝑡 𝑓𝑜𝑟 𝑘𝑖, … … … , 𝑘(𝑗,) where 𝑖 ≥ 1, 𝑗 ≤ 5, 𝑗 ≥ 𝑖 − 1 𝑎𝑛𝑑 𝑤ℎ𝑒𝑛 𝑗 = 𝑖 −

1 𝑡ℎ𝑒 𝑡𝑟𝑒𝑒 𝑖𝑠 𝑒𝑚𝑝𝑡𝑦. For a selected root 𝑘𝑟, 𝑖 ≤ 𝑟 ≤ 𝑗 we recursively make an optimal BST. We

also need to define the depth of every node as 𝑤(𝑖, 𝑗) = 𝑤(𝑖, 𝑟 − 1) + 𝑝𝑟 + 𝑤(𝑟 + 1, 𝑗).

As we do not know 𝑘𝑟 we can calculate the expected search cost of at the root as:

 𝑒[𝑖, 𝑗] = {

𝑞𝑖 − 1 𝑖𝑓 𝑗 = 𝑖 − 1

min{𝑒[𝑖, 𝑟 − 1] + 𝑒[𝑟 + 1, 𝑗] + 𝑤(𝑖, 𝑗)} 𝑖𝑓 𝑖 ≤ 𝑗
𝑖 ≤ 𝑟 ≤ 𝑗

Step 3: Computing the expected search cost of the optimal binary search tree

𝑘𝑟

𝑘1 𝑘𝑟−1 𝑘𝑟+1 𝑘𝑗

As a recursive matric chain multiplication algorithm will be inefficient, we can store the 𝑒[𝑖, 𝑗]

values in a table 𝑒[1 … 𝑛 + 1,0 … 𝑛]. We also use a table 𝑟𝑜𝑜𝑡[𝑖, 𝑗] for recording the root of the

subtree and another table 𝑤[1, … 𝑛 + 1,0 … 𝑛] for storing the values of 𝑒[𝑖, 𝑗].

For the given keys using the algorithm for optimal binary search tree we get,

 j = 0 1 2 3 4 5

i = 1 e = 0

w = 0

e = 0.23

w = 0.23

r = 1

e = 0.73

w = 0.50

r = 2

e = 1.05

w = 0.66

r = 2

e = 1.47

w = 0.80

r = 2

e = 2.09

w = 1.00

r = 2

2 e = 0

w = 0

e = 0.27

w = 0.27

r = 2

e = 0.59

w = 0.43

r = 2

e =0.98

w = 0.57

r = 3

e = 1.52

w = 0.77

r = 3

3 e = 0

w = 0

e = 0.16

w = 0.16

r = 3

e = 0.44

w = 0.30

r = 3

e = 0.86

w = 0.50

r = 4

4 e = 0

w = 0

e = 0.14

w =0.14

r = 4

e = 0.48

w = 0.34

r = 5

5 e = 0

w = 0

e = 0.20

w = 0.20

r = 5

6 e = 0

w = 0

 Some node calculations are shown here:

For node [3,4]

𝑖 = 3, 𝑗 = 4

𝑊ℎ𝑒𝑛 𝑟 = 3, 𝑒 = 0 + 0.14 + 0.30 = 0.44

𝑊ℎ𝑒𝑛 𝑟 = 4, 𝑒 = 0.16 + 0 + 0.30 = 0.46

𝑟 = 3 𝑖𝑠 𝑐ℎ𝑜𝑠𝑒𝑛.

For node [4,5]

𝑖 = 4, 𝑗 = 5

𝑊ℎ𝑒𝑛 𝑟 = 4, 𝑒 = 0 + 0.20 + 0.34 = 0.54

𝑊ℎ𝑒𝑛 𝑟 = 5, 𝑒 = 0.14 + 0 + 0.34 = 0.48

𝑟 = 5 𝑖𝑠 𝑐ℎ𝑜𝑠𝑒𝑛.

For node [3,5]

𝑖 = 3, 𝑗 = 5

𝑊ℎ𝑒𝑛 𝑟 = 3, 𝑒 = 0 + 0.48 + 0.50 = 0.98

𝑊ℎ𝑒𝑛 𝑟 = 4, 𝑒 = 0.16 + 0.20 + 0.50 = 0.86

𝑊ℎ𝑒𝑛 𝑟 = 5, 𝑒 = 0.44 + 0 + 0.50 = 0.94

𝑟 = 4 𝑖𝑠 𝑐ℎ𝑜𝑠𝑒𝑛

For node [2,4]

𝑖 = 2, 𝑗 = 4

𝑊ℎ𝑒𝑛 𝑟 = 2, 𝑒 = 0 + 0.44 + 0.57 = 1.01

𝑊ℎ𝑒𝑛 𝑟 = 3, 𝑒 = 0.27 + 0.14 + 0.57 = 0.98

𝑊ℎ𝑒𝑛 𝑟 = 4, 𝑒 = 0.59 + 0.20 + 0.57 = 1.36

𝑟 = 3 𝑖𝑠 𝑐ℎ𝑜𝑠𝑒𝑛

For node [2,5]

𝑖 = 2, 𝑗 = 5

𝑊ℎ𝑒𝑛 𝑟 = 2, 𝑒 = 0 + 0.86 + 0.77 = 1.63

𝑊ℎ𝑒𝑛 𝑟 = 3, 𝑒 = 0.27 + 0.48 + 0.77 = 1.52

𝑊ℎ𝑒𝑛 𝑟 = 4, 𝑒 = 0.59 + 0.20 + 0.77 = 1.56

𝑊ℎ𝑒𝑛 𝑟 = 5, 𝑒 = 0.98 + 0 + 0.77 = 1.75

𝑟 = 3 𝑖𝑠 𝑐ℎ𝑜𝑠𝑒𝑛

For node [1,4]

𝑊ℎ𝑒𝑛 𝑟 = 1, 𝑒 = 0 + 0.98 + 0.80 = 1.78

𝑊ℎ𝑒𝑛 𝑟 = 2, 𝑒 = 0.23 + 0.44 + 0.80 = 1.47

𝑊ℎ𝑒𝑛 𝑟 = 3, 𝑒 = 0.73 + 0.14 + 0.80 = 1.67

𝑊ℎ𝑒𝑛 𝑟 = 4, 𝑒 = 0.89 + 0 + 0.80 = 1.69

 𝑟 = 2 𝑖𝑠 𝑐ℎ𝑜𝑠𝑒𝑛

For node [1,5]

𝑊ℎ𝑒𝑛 𝑟 = 1, 𝑒 = 0 + 1.52 + 1 = 2.52

𝑊ℎ𝑒𝑛 𝑟 = 2, 𝑒 = 0.23 + 0.86 + 1 = 2.09

𝑊ℎ𝑒𝑛 𝑟 = 3, 𝑒 = 0.73 + 0.48 + 1 = 2.21

𝑊ℎ𝑒𝑛 𝑟 = 4, 𝑒 = 1.05 + 0.20 + 1 = 2.25

𝑊ℎ𝑒𝑛 𝑟 = 5, 𝑒 = 1.47 + 0 + 1 = 2.47

𝑟 = 2 𝑖𝑠 𝑐ℎ𝑜𝑠𝑒𝑛

Now, we can select the root by checking node [1,5] and get r[1,5] = 2

We get the tree:

We check node [3,5] for root value of the subtree and get r[3,5] = 4.

Answer to Question 2

K2

K1
k3, k4, k5

K2

K1 K4

K5 K3

Deletion – Pseudocode

Tree-Delete(T,z)

1. if 𝑙𝑒𝑓𝑡[𝑥] = 𝑁𝐼𝐿 or 𝑟𝑖𝑔ℎ𝑡[𝑥] = 𝑁𝐼𝐿

2. then 𝑦 ← 𝑥

3. else 𝑦 ← 𝑇𝑟𝑒𝑒 − 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟[𝑥]

4. if 𝑟𝑖𝑔ℎ𝑡[𝑦] ≠ 𝑁𝐼𝐿

5. then 𝑎 ← 𝑟𝑖𝑔ℎ𝑡[𝑦]

6. else 𝑎 ← 𝑙𝑒𝑓𝑡[𝑦]

7. if 𝑎 ≠ 𝑁𝐼𝐿

8. then 𝑝[𝑎] ← 𝑝[𝑦]

9. if 𝑝[𝑦] = 𝑁𝐼𝐿

10. then 𝑟𝑜𝑜𝑡[𝑇] ← 𝑎

11. else if 𝑦 = 𝑟𝑖𝑔ℎ𝑡[𝑝[𝑦]]

12. then 𝑟𝑖𝑔ℎ𝑡[𝑝[𝑦]] ← 𝑎

13. else 𝑙𝑒𝑓𝑡[𝑝[𝑦]] ← 𝑎

Predecessor(x)

x

exchange

14. if 𝑦 ≠ 𝑥

15. then 𝑘𝑒𝑦[𝑥] ← 𝑘𝑒𝑦[𝑦]

16. Copy y’s satellite data into x.

17. return y

Answer to Question 3

Let the height of a node ℎ(𝑥) = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑎 𝑙𝑜𝑛𝑔𝑒𝑠𝑡 𝑝𝑎𝑡ℎ 𝑜𝑓 𝑎 𝑙𝑒𝑎𝑓.

𝑏ℎ(𝑥)

= 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑙𝑎𝑐𝑘 𝑛𝑜𝑑𝑒𝑠 (𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑛𝑖𝑙[𝑇]) 𝑜𝑛 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑥 𝑡𝑜 𝑙𝑒𝑎𝑓, 𝑛𝑜𝑡 𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔 𝑥.

Since there are no consecutive red nodes and we end with black (Prop 3), ℎ(𝑥) ≤ 2𝑏ℎ(𝑥).

Lemma: The subtree rooted at any node x has 𝑥 ≥ 2𝑏ℎ(𝑥) − 1 internal nodes.

Proof by Induction:

 Base Case: when ℎ(𝑥) = 0, x is a leaf

 𝑏ℎ(𝑥) = 0

 Subtree has 20 − 1 = 0 nodes.

 Hypothesis: Assume that for any node k with height<h the lemma holds. Each child has

≥ 2𝑏ℎ(𝑥)−1 − 1 internal nodes.

 Induction step: Consider node 𝑥 ≠ 𝑘 with ℎ(𝑥) = ℎ > 0 and 𝑏ℎ(𝑥) = 𝑏.

 Each child of x has heigh at most ℎ − 1 and black-height either b (when child is red) or

b-1 (child is black).

 Subtree rooted at x had ≥ 2(2𝑏ℎ(𝑥)−1 − 1) + 1 internal nodes

 = 2𝑏ℎ(𝑥) − 1 internal nodes.

Now, using this Lemma we can prove the Lemma: A red-black tree with n internal nodes has

height of at most 2 lg(𝑛 + 1).

Proof: From the above lemma, 𝑛 ≥ 2𝑏ℎ(𝑥) − 1

 We know, ℎ(𝑥) ≤ 2𝑏ℎ(𝑥) (derived from Prop 3).

 ⇒ 𝑏ℎ ≥
ℎ

2

 ⇒ 𝑛 ≥ 2
ℎ

2 − 1

 ⇒ ℎ ≤ 2 lg(𝑛 + 1) [Proved]

Answer to Question 4

RB-Delete-Fixup(T,x)

1. while 𝑥 ≠ 𝑟𝑜𝑜𝑡 𝑇 𝑎𝑛𝑑 𝑐𝑜𝑙𝑜𝑟[𝑥] = 𝐵𝐿𝐴𝐶𝐾

2. do if 𝑥 = 𝑟𝑖𝑔ℎ𝑡[𝑝[𝑥]]

3. then 𝑤 ← 𝑙𝑒𝑓𝑡[𝑝[𝑥]]

4. If 𝑐𝑜𝑙𝑜𝑟[𝑤] = 𝑅𝐸𝐷

5. then 𝑐𝑜𝑙𝑜𝑟[𝑤] ← 𝐵𝐿𝐴𝐶𝐾

6. 𝑐𝑜𝑙𝑜𝑟[𝑝[𝑥]] ← 𝑅𝐸𝐷

7. 𝑅𝐼𝐺𝐻𝑇 − 𝑅𝑂𝑇𝐴𝑇𝐸(𝑇, 𝑝[𝑥])

8. 𝑤 ← 𝑙𝑒𝑓𝑡[𝑝[𝑥]]

9. If 𝑐𝑜𝑙𝑜𝑟[𝑟𝑖𝑔ℎ𝑡[𝑤]] = 𝐵𝐿𝐴𝐶𝐾 𝑎𝑛𝑑 𝑐𝑜𝑙𝑜𝑟[𝑙𝑒𝑓𝑡[𝑤]] = 𝐵𝐿𝐴𝐶𝐾

10. then 𝑐𝑜𝑙𝑜𝑟[𝑤] = 𝑅𝐸𝐷

11. 𝑥 ← 𝑝[𝑥]

12. else if 𝑐𝑜𝑙𝑜𝑟[𝑙𝑒𝑓𝑡[𝑤]] = 𝐵𝐿𝐴𝐶𝐾

13. then 𝑐𝑜𝑙𝑜𝑟[𝑟𝑖𝑔ℎ𝑡[𝑤]] ← 𝑅𝐸𝐷

14. 𝑐𝑜𝑙𝑜𝑟[𝑤] ← 𝑅𝐸𝐷

15. 𝐿𝐸𝐹𝑇 − 𝑅𝑂𝑇𝐴𝑇𝐸(𝑇, 𝑤)

16. 𝑤 ← 𝑙𝑒𝑓𝑡[𝑝[𝑥]]

17. 𝑐𝑜𝑙𝑜𝑟[𝑤] ← 𝑐𝑜𝑙𝑜𝑟[𝑝[𝑥]]

18. 𝑐𝑜𝑙𝑜𝑟[𝑝[𝑥]] ← 𝐵𝐿𝐴𝐶𝐾

19. 𝑐𝑜𝑙𝑜𝑟[𝑙𝑒𝑓𝑡[𝑤]] ← 𝐵𝐿𝐴𝐶𝐾

20. 𝑅𝐼𝐺𝐻𝑇 − 𝑅𝑂𝑇𝐴𝑇𝐸(𝑇, 𝑝[𝑥])

21. 𝑥 ← 𝑟𝑜𝑜𝑡[𝑇]

22. else (treatment of the case that x is a left child)

23. 𝑐𝑜𝑙𝑜𝑟[𝑥] ← 𝐵𝐿𝐴𝐶𝐾

With the written algorithm, the cases 5-8 are handled as illustrated in the following diagram.

D

B E

A C

w x

B

A D

C E x new w

D

B E

A C

w x

D

B E

A C

new x

Case 5

Case 6

D

B E

A C

D

C

B

A

E x w new w x

D

B E

A C

B

A D

C E

   

 
 

   

w x

C’

x

Case 7

Case 8

Answer to Question 5

Tracing computation process when applying Ford-Fulkerson algorithm:

Flow on edge is 0. The corresponding residual graph network with the selected augmenting

path p1 marked in orange:

Pushing a flow of 4 (min cost) on p1.

v1

s

v2

v3

v4

t

Edmonton

Vancouver

Calgary

Saskatoon

Winnipeg

Regina

0/10

0/10

0/10 0/4

0/16

0/4

0/12

0/13

0/13

0/7

v1

s

v2

v3

v4

t

Edmonton

Vancouver

Calgary

Saskatoon

Winnipeg

Regina

10

10

10 4

16

4

12

13

13

7

The corresponding residual network:

Pushing a flow of 6 on p2.

v1

s

v2

v3

v4

t

Edmonton

Vancouver

Calgary

Saskatoon

Winnipeg

Regina

4/10

4/10

0/10 0/4

0/16

4/4

4/12

0/13

4/13

0/7

v1

s

v2

v3

v4

t

Edmonton

Vancouver

Calgary

Saskatoon

Winnipeg

Regina

6

6

10

4

16

4

8
13

9
7

4

4

4

4

0

v1

s

v2

v3

v4

t

Edmonton

Vancouver

Calgary

Saskatoon

Winnipeg

Regina

10/10

4/10

6/10 -2/4

6/16

4/4

10/12

0/13

4/13

6/7

The corresponding residual graph network:

Pushing a flow of 6 on p3.

The corresponding residual network.

v1

s

v2

v3

v4

t

Edmonton

Vancouver

Calgary

Saskatoon

Winnipeg

Regina

0

6

4

6

10

4

2
13

9
1

10

4

4

10

0

6
6

v1

s

v2

v3

v4

t

Edmonton

Vancouver

Calgary

Saskatoon

Winnipeg

Regina

10/10

10/10

0/10 4/4

12/16

4/4

10/12

6/13

4/13

6/7

Pushing a flow of 4 on p4.

Corresponding residual network:

v1

s

v2

v3

v4

t

Edmonton

Vancouver

Calgary

Saskatoon

Winnipeg

Regina

0

0

10

0

4

4

2
7

9
1

10

10

4

10

0

12
6

6

v1

s

v2

v3

v4

t

Edmonton

Vancouver

Calgary

Saskatoon

Winnipeg

Regina

10/10

10/10

0/10 4/4

16/16

4/4

10/12

10/13

0/13

6/7

0/0

No augmenting paths in the corresponding residual network. (Termination)

Answer to Question 6

p = ababcab t = abababcababcab

Compute-Prefix-Function(P)

1. m ← length[T]

2. 𝜋[1] ← 0

3. q ← 0

4. for i ← 2 to m

5. do while q > 0 and P[q + 1] ≠ P[i]

6. do q ← 𝜋[q]

7. if P[q + 1] = P[i]

8. then q ← q + 1

9. 𝜋[i] ←q

10. return 𝜋

Computation process of Compute prefix function:

v1

s

v2

v3

v4

t

Edmonton

Vancouver

Calgary

Saskatoon

Winnipeg

Regina

0

0

10

0

0

4

2
3

13
1

10

10

0

10

0

16
6

10

𝜋[1] = 0 First prefix value is 0.

𝑞 𝑖 𝑞 + 1 𝑃[𝑞 + 1] 𝑃[𝑖] 𝜋[𝑖]

0 2 1 a b 0

0 3 1 a a 1

1 4 2 b b 2

2 5 3 a c 0

0 6 1 a a 1

1 7 2 b b 2

We get,

𝑖 1 2 3 4 5 6 7

𝑃[𝑖] a b a b c a b

𝜋[𝑖] 0 0 1 2 0 1 2

Knuth-Morris-Pratt algorithm uses this prefix table as such:

KMP-Matcher(T, P)

1. n  length[T]

2. m  length[P]

3.   Compute-Prefix-Function(P)

4. q  0

5. for i  1 to n

6. do while q > 0 and P[q + 1]  T[i]

7. do q  [q]

8. if P[q + 1] = T[i]

9. then q  q + 1

10. if q = m

11. then print “pattern occurs with shift” i – m

12. q  [q]

𝑖 𝑞 𝜋[𝑞] 𝑞 + 1 𝑇[𝑖] 𝑃[𝑞 + 1]

1 0 - 1 a a

2 1 0 2 b b

3 2 0 3 a a

4 3 1 4 b b

5 4 2 5 a c

6 2 0 3 b a

7 0 - 1 c a

8 0 - 1 a a

9 1 0 2 b b

10 2 0 3 a a

11 3 1 4 b b

12 4 2 5 c c

13 5 0 6 a a

14 6 1 7 b b

Algorithm prints “pattern occurs with shift 7” (i-m = 14-7 = 7)

